Observational Studies on Association between Eastward Equatorial Jet and Indian Ocean Dipole

نویسنده

  • PETER C. CHU
چکیده

Association between weakening/strengthening of the eastward equatorial jet (EEJ) in both seasons and the Indian Ocean dipole (IOD) was investigated using two independent observational datasets (October 1992 to September 2007): (a) the dipole mode index I(t) and (b) the 5-day Ocean Surface Current Analyses-Realtime (OSCAR) obtained from satellite altimetry and scatterometer data, which has strong seasonal variability, with the EEJ occurrence in spring and fall, shown from the time-longitude cross-section of equatorial zonal velocity (1°S–1°N). The association is detected in two ways. First, time series of averaged zonal velocity over (1°S–1°N, 42°E–100°E) U(t) shows a close association to the dipole mode index: positive IOD events (1994, 1997, 2006) correspond to negative U (westward equatorial current), and negative IOD events (1994, 1995, 1999, 2005) correspond to positive U (eastward equatorial current). Second, the EEJ weakening/strengthening is represented by the streamfunction anomaly relative to its climatological monthly mean fields. The streamfunction anomaly is further analyzed using the empirical orthogonal function (EOF) method. The first EOF mode accounts for 55% of the variance with corresponding principal component A(1)(t) showing evident pattern of EEJ strengthening and weakening. The correlation coefficient between I(t) and A(1)(t) is around 0.49. This may confirm the linkage in some sense (only EOF-1 considered) between the positive (negative) IOD events and the weakening (strengthening) of the EEJ. The dipole pattern of lag-correlation between the sea surface temperature anomaly and U confirms the connection between the EEJ weakening/strengthening and the IOD events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equatorial undercurrents associated with Indian Ocean Dipole events during contrasting summer monsoons

[1] Positive Indian Ocean Dipole (IOD) events generally tend to be accompanied by intensified summer monsoon flows and above normal precipitation over the subcontinent; although strong monsoons have not always coincided with positive IOD events. Numerical simulation experiments and supplementary data diagnostics are performed to understand the IOD sub-surface dynamics in relation to the monsoon...

متن کامل

Impact of Atmospheric Intraseasonal Variability in the Indian Ocean: Low-Frequency Rectification in Equatorial Surface Current and Transport

An ocean general circulation model (OGCM) is used to investigate the low-frequency (period longer than 90 days) rectification of atmospheric intraseasonal variability (10–90-day periods) in zonal surface current and transport of the equatorial Indian Ocean. A hierarchy of OGCM solutions is found in an actual tropical Indian Ocean basin for the period of 1988–2001. To help to identify and isolat...

متن کامل

Biogeochemical variability in the central equatorial Indian Ocean during the monsoon transition

In this paper we examine time-series measurements of near-surface chlorophyll concentration from a mooring that was deployed at 80.5E on the equator in the Indian Ocean in 2010. These data reveal at least six striking spikes in chlorophyll from October through December, at approximately 2-week intervals, that coincide with the development of the fall Wyrtki jets during the transition between th...

متن کامل

The Boreal Summer Intraseasonal Oscillation: Relationship between Northward and Eastward Movement of Convection

The summertime intraseasonal oscillation (ISO) is an important component of the south Asian monsoon. Lagged regressions of intraseasonally filtered (25–80 days) outgoing longwave radiation (OLR) reveal that centers of convection move both northward and eastward from the central equatorial Indian Ocean subsequent to the initiation of an ISO. Eastward movement of convection is also seen at Indian...

متن کامل

3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon

Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010